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Abstract

We describe a stochastic dynamic programming approach for “real option” based valua-

tion of electricity generation capacity incorporating operational constraints and startup costs.

Stochastic prices of electricity and fuel are represented by recombining multinomial trees. Gen-

erators are modeled as a strip of cross commodity call options with a delay and a cost imposed

on each option exercise. We illustrate implications of operational characteristics on valuation

of generation assets under different modeling assumptions about the energy commodity prices.

We find that the impacts of operational constraints on real asset valuation are dependent upon

both the model specification and the nature of operating characteristics.

Subject Classifications: Finance: asset pricing, investment. Natural resources: energy. Proba-

bility: diffusion, stochastic modeling.



1 Introduction

The restructuring of electric power industry has become a global trend since the early 1990s. As

a result, electricity markets emerge in many regions and countries. In US, for instance, electricity

wholesale markets have been established in California, Pennsylvania, New Jersey, Maryland (PJM),

New York and in New England. In the emerging power markets, one of the crucial issues is the

determination of market based value of generation capacity in a competitive market environment

with volatile electricity prices. The importance of capacity valuation is underscored by the needs

of many large utility companies required to divest generation assets in order to ensure competition.

Such valuation is also essential for investors and market participants contemplating investment in

or acquisition of new generation assets.

Under the traditional regulatory regime, electricity prices were set by the regulators based on

cost of service. Investments in generation capacity by the utilities were subject to approval by

the regulators based on integrated resource planning and upon approval were allowed to earn a

fixed return on investment through regulated electricity tariffs. The economic viability of such

investment opportunities could be determined by means of a discounted cash flow (DCF) method.

Under this approach the DCF analysis is coupled with a production simulation model that produces

the projected cash flow of the generation unit under consideration given the resource portfolio and

the forecasted load. However, this paradigm is being changed by the restructuring of the electricity

supply industries. Electricity prices in many regions, at least at the wholesale level, are no longer set

by policy makers but rather by market forces. It has also been recognized in literature (e.g., Dixit

and Pindyck 1996) that the traditional discounted cash flow (DCF) method tends to undervalue

assets in the presence of uncertainty since that approach tends to ignore the value of real options,

such as turning off a plant when the price is too low. In the presence of well developed financial

and physical markets for electricity, the payoffs of an electric power plant can be modeled in terms

of a financial instruments on electricity. Financial methods can be applied to value the financial

instruments and thus the power plant. In Deng, Johnson, and Sogomonian (1998), a real options

approach is proposed to value electricity generation assets. In particular, they construct a spark

spread option based valuation for fossil-fuel power plants. They demonstrate that the option-based

valuation provides a much better approximation to the observed market valuation than does DCF

valuation. However, some operational characteristics, such as start-up costs, ramp-up constraints

and operating-level-dependent heat rate, are not explicitly taken into consideration in their work.
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While it is important to identify and account for the embedded real options in valuing genera-

tion assets, it is of equal importance to recognize that physical operating characteristics of a real

asset often impose restrictions on exercising these embedded options. The constraints on exercising

the real options translate into transaction costs borne by the asset owner thus reducing the asset

value. Ignoring operating characteristics in the valuation of a real asset would almost certainly

lead to overvaluation. In a typical power asset sales transaction such as the one completed in April

1999 between Pacific Gas & Electric and Southern Energy which totaled $801 million dollars, even

an 1% overvaluation would cause a loss of millions of dollars from a purchaser’s point of view. It is

therefore important to account for operational constraints when applying financial option pricing

methodology to value real assets. In this paper, we explicitly incorporate operational characteris-

tics associated with a power plant into the real options valuation approach. The methodology that

we employ is to formulate a stochastic dynamic program (SDP) for the asset valuation problem

based on a discrete-time lattice price model. This approach has its root in the binomial option

pricing model developed by Cox, Ross, and Rubinstein (1979). Tseng and Barz (2001) have pur-

sued, independently, a similar approach that focuses on the short-term generation asset valuation

problem. They simulate power prices and solve a unit commitment problem with constraints such

as start-up and shut down costs, minimum run time, and maximum ramp rate over a relatively

short time horizon. That approach, however, is computationally infeasible for the long-term asset

valuation problem, which we address, with a time horizon of years and granularity of days.

Another task of this paper is to investigate the interaction between different modeling assump-

tions concerning the commodity price models and the effects of operational characteristics in valuing

real assets. We take the classic Geometric Brownian motion price model and examine the asset

valuation problem with operational constraints and then compare the valuation results with those

obtained under mean-reversion price models. We find that the significance of overvaluation result-

ing from ignoring operational characteristics varies under different assumptions regarding the price

processes for electricity and for the generating fuel.

The remainder of the paper is organized as follows. We first describe an asset valuation problem

for a fossil-fuel power generating asset incorporating operating characteristics in a deregulated

electric power industry in Section 2. We highlight several key characteristics that we take into

consideration in the asset valuation problem. In Section 3, we construct approximations to two

different continuous-time price models for electricity and the generating fuel by using discrete-time
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multinomial lattice processes. We then develop a stochastic dynamic programming model based

on the lattice price processes to incorporate operational constraints into the valuation problem

and prove some structural properties of the solutions to the SDP. In Section 4, we present results

from numerical experiments to illustrate how significant each of the operational characteristics of a

power plant is in terms of affecting the valuation result at different operating efficiency levels. We

further demonstrate that the significance of such impacts on power asset valuation by operating

characteristics is sensitive to the assumptions on price dynamics of electricity and the generating

fuel. Finally, we conclude with observations and remarks.

2 Problem Description

With electricity markets established in more and more regions and countries, market force urges

participants of power markets to develop market-based approaches for the valuation of power assets

such as generation and transmission assets. While financial economic theories provide useful tools

for capturing the embedded option value of such assets, we note that physical assets differ from

financial assets in several important aspects. First of all, while providing similar benefits to the

owner, a physical asset usually involves more significant transaction costs than does a financial asset.

Secondly, the value of the optionality associated with operating a physical asset at different time

epochs is often interrelated through inter-temporal operational constraints. This fact makes the

closed-form financial option pricing formulas overly simplistic approximations of the operational

option values. Therefore, it is important for us to explicitly take into account the operational

characteristics when constructing an option-value-based approach for valuing real assets.

In the context of deregulated power industry, financial option pricing theory recently has been

applied in the valuation of fossil fuel electricity generation assets. A fossil fuel power plant converts

a generating fuel into electricity at certain conversion rate which is termed heat rate. Roughly

speaking, heat rate measures the number of units of the fuel needed for generating one unit of

electricity. The owner of a merchant power plant (i.e., a power plant sells its output into at least

one spot market) has the right but not the obligation to generate electricity by burning fuel at any

point in time during the lifetime of the power plant. Upon executing such operational rights over

time, the owner receives the spot price of electricity less the heat rate adjusted generating fuel cost

by selling/purchasing electricity/fuel at spot market prices, respectively. A rational power plant

owner would only exercise the operational right at time t when the electricity price less generating
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fuel cost is positive at that time. Recall that a spark spread call option is an option that yields

its holder the positive part of electricity price less the “strike” heat rate adjusted fuel price at its

maturity time. Therefore the payoff obtainable to a rational merchant power plant owner at time

t is the same as that of a properly structured spark spread call option with strike heat rate being

set at the operating heat rate level of the power plant. This observation leads to a spark spread

option based valuation of a fossil-fuel power plant which values the underlying plant by summing

up the value of the corresponding set of spark spread call options with maturity time spanning the

lifetime of the plant. It is demonstrated that such a spark spread option-based valuation provides

a much better approximate to the observed market valuation than does DCF valuation (e.g., Deng,

Johnson and Sogomonian (1998)).

The financial option based valuation approach makes simplifying assumptions regarding the

operational characteristics of a power plant. It assumes that a power plant can be instantly turned

on or shut down, there are no fixed operating costs but only variable production costs involved

in the operations of a power plant, and the operating efficiency of a power plant is at a constant

level. However, these assumptions are not very realistic. In operating a fossil fuel power plant,

many operational characteristics can potentially affect the flexibility (namely, optionality) of the

power plant (e.g., Wood and Wollenberg (1984)). We elaborate on three of them. First of all, fixed

costs are usually incurred whenever a power plant is turned on from the “off” state. For a steam

generating unit, for instance, water in the boiler needs to be boiled before the unit can generate

electricity and the amount of fuel required to boil the water often depends on how long the unit has

been shut down. That is, startup costs are involved in the process of turning a power generating

unit on and the costs could be time dependent. Sometimes, there are also costs associated with

the process of shutting down a power plant which are called shut-down costs. Secondly, upon

turning on a power generating unit (in general, a power plant often has several generating units,

but for the ease of exposition, we assume that a power plant only has one generating unit), we

usually do not get the output electricity immediately since a short period of time (e.g., the time for

boiling water in the boiler) is needed for the generating unit to start from the “off” state and reach

certain operating output levels. This time is often called the ramp-up time. Thirdly, regarding

the operating efficiency of a power plant, the converting rate at which a power plant transforms

the generating fuel into electricity indeed differs with output levels. This converting rate is called

operating heat rate. The power plant is more efficient when being operated at the rated full
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capacity level than at a low output level. Thus the operating heat rate of a power plant is a function

of its output level. We will explicitly incorporate these operational characteristics of a fossil fuel

power plant into its valuation and explore the effects of them on the valuation.

In principle, one can formulate the operation of a power plant incorporating all operational char-

acteristics as a full-fledged dynamic programming problem. However, the computational complexity

makes such an approach prohibitively difficult to implement. What we choose to do is to model the

above characteristics under simplifying assumptions. Specifically, we model the startup/shut-down

cost, ramp-up time and output dependent operating heat rate as described below.

• Startup/shut-down cost: We assume that fixed costs cstart and cdown are incurred each

time a power plant is turned on and off, respectively. While the cost to start up a generating

unit depends on how long the unit has been turned off, (that is, the longer the unit is off, the

more heat is dissipated from its boiler thus a higher cost would be incurred when reheating

the water), we simplify this effect assuming that cstart is a constant.

• Ramp-up time: Similar to the case of start-up cost, the length of the ramp-up time also

depends on how long the power plant has been off. To reflect this aspect to first order, we

approximate the ramp-up time by assuming that, whenever a power plant is turned on from

the “off” state, there is a fixed delay time of length D between that turn-on point and the

time point at which usable electricity is generated. Moreover, during the ramp-up period,

there is a cost incurred at a rate of cr dollars per unit time which is generally a function of

the cost of the fuel burnt to ramp up the plant.

• Output dependent operating heat rate: While a power plant is in operation, its oper-

ating efficiency measured by its operating heat rate varies with the output level, namely, the

operating heat rate is output dependent rather than a constant over time. When operated at

its rated maximum capacity level, the power plant is very efficient (i.e. operating heat rate

is at the low end of the heat rate range); when operated at its rated minimum capacity level,

the power plant is very inefficient (i.e., operating heat rate is at the high end of the heat rate

range). The operating heat rate of a generating unit is often modeled as a quadratic function

of the electricity output quantity (e.g., see Wood and Wollenberg (1984)). To approximate

this dependency, we make a simplifying assumption on output level and the operating heat

rate. Specifically, we assume that a power plant has only two possible output levels (this can
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be easily generalized to the case with n possible output levels.): one being the rated capacity

level Q per unit of time, called maximum output level, with an operating heat rate of Hr;

and the other one being the minimum capacity level Q (Q < Q) per unit of time, that is,

the minimum output level possible in order to keep a power plant being operational, with a

corresponding heat rate of Hr. We make 0 < Hr ≤ Hr to reflect the fact that a fossil-fuel

power plant is more efficient when operated in a high output level than in a low output level.

We also assume that the switching between the maximum capacity level and the minimum

capacity level is instantaneous and costless.

With the above assumptions, we proceed to the formulation of a stochastic dynamic programming

problem for the valuation of power generation capacity.

3 A Stochastic Dynamic Programming Formulation

As a common feature in almost all commodity prices, mean-reversion appears in energy prices as well

(e.g., Schwartz (1997)). In addition to mean-reversion, electricity prices also exhibit phenomena

such as jumps, spikes, and stochastic volatility (e.g., Deng (1999)). However, in this paper, we

model the mean-reversion aspect of the electricity price only. More specifically, we investigate the

effects of operational characteristics on valuation of generation capacity under the assumption of

mean-reverting electricity price similar to those made in Deng, Johnson and Sogomonian (1998).

Let the state space be in R2 representing the logarithm of the prices of the two underlying

commodities. Let X̃t and Ỹt denote the natural logarithm of the prices of electricity and the

generating fuel, (lnSe
t , ln Sg

t ), respectively. From here on, we use natural gas as one example of the

generating fuel but the assumptions on the generating fuel price are also applicable to other fossil

fuels such as coal. We assume that X̃t and Ỹt evolve according to two correlated continuous-time

stochastic processes defined by the following stochastic differential equations (SDEs).

dX̃t = κ1(t)(θ1(t)− X̃t)dt + σ1(t)dW 1
t

dỸt = κ2(t)(θ2(t)− Ỹt)dt + σ2(t)dW 2
t

(1)

where κi(t) (i = 1, 2) is the mean-reversion coefficient, θi(t) (i = 1, 2) is the long-term mean

function, σi(t) (i = 1, 2) is the instantaneous volatility function, and W 1
t and W 2

t are two correlated

standard Brownian motions with instantaneous correlation ρ(t) and ρ(t)dt = Cov(dW 1
t , dW 2

t ).
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One can formulate the asset valuation problem as a stochastic dynamic program based on

the continuous-time stochastic price processes {X̃t, Ỹt : t ≥ 0} and take into consideration the

operational constraints. But such an approach would encounter difficulty when trying to solve

the Hamilton-Jaccobi-Bellman equations because of the operational constraints and the fact that

action space (which will be defined in Section 3.2) is a discrete set rather than a continuous set.

We choose the approach of discretizing the continuous-time price processes {(X̃t, Ỹt) : t ≥ 0} into

a recombining lattice process denoted by {(Xt, Yt) : t = t0, t1, t2, t3, · · ·} with t0 = 0. The size of

the state space for {Xt, Yt} grows only as a polynomial function of the number of time steps. We

then formulate the valuation problem of a generation asset as a discrete-time stochastic dynamic

programming problem incorporating operational constraints involving start-up costs, ramping-up

time, and different heat rates under different output levels.

We start with the construction of the discrete time price processes and then present the model

formulation.

3.1 Construction of The Discrete Price Processes

As one of our goals is to investigate the effects of price process assumption on asset valuation,

we construct discrete-time log-price processes for two types of continuous-time price processes: a

Brownian motion process and a simple mean-reverting process. A multitude of existing literature

in finance has addressed the issue of discretizing two or several correlated geometric Brownian

motions (e.g. Boyle (1988), He (1990)). Li and Kouvelis (1999) presents a discretization of one

mean-reverting process. We provide an extension in Section 3.1.2 to discretize two correlated

mean-reverting processes.

We consider a time horizon which starts at 0 and ends at time T . We divide the interval [0, T ]

into N sub-intervals, [0, t1], (t1, t2], · · · , (tN−1, tN ≡ T ] of equal length ∆t ≡ T/N . We assume

that the states of the price processes change value only at ti (i = 1, 2, · · · , N) and the state vector

(Xt, Yt) takes on a finite set of values. With the understanding that (Xi, Yi) denotes (Xti , Yti) (i =

0, 1, 2, · · · , N), we rewrite the processes {(Xt, Yt) : t = t0, t1, · · · , tN} as {(Xi, Yi) : i = 0, 1, · · · , N}.
By properly defining the states and the state transition probabilities, we are able to show that

the corresponding discrete-time Markov process {(Xt, Yt)} converges in distribution to either the

Geometric Brownian motion processes (2) or the mean-reverting processes (1).
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3.1.1 Brownian motion process

Suppose {(X̃t, Ỹt) : t ≥ 0} are two correlated Brownian motions with constant coefficients for mean

(µ1, µ2) and volatility (σ1, σ2), and correlation ρ as defined in the following SDEs.

dX̃t = µ1dt + σ1dW 1
t

dỸt = µ2dt + σ2dW 2
t

(2)

where W 1
t and W 2

t are two correlated standard Brownian motions with an instantaneous correlation

ρ, namely, ρdt = Cov(dW 1
t , dW 2

t ).

We construct a discrete-time Markov vector process as a recombining trinomial lattice. That is,

starting from each log-price state vector (Xt, Yt) at time t (t = 0, 1, 2, · · · , N − 1), there are three

possible states to reach at time (t+1) as illustrated in the left panel of Figure 1. The values of the
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Figure 1: Lattice Price Models: Trinomial Tree (left panel) vs. Quadrinomial Tree (right panel).

three possible states (Xj
t+1, Y

j
t+1) (j = 1, 2, 3) are given as follows (3).

Xj
t+1 =





Xt + µ1∆t + σ1

√
3
2

√
∆t (j = 1)

Xt + µ1∆t (j = 2)

Xt + µ1∆t− σ1

√
3
2

√
∆t (j = 3)

(3)

Y j
t+1 =





Yt + µ2∆t + ρσ2

√
3
2

√
∆t + σ2

√
1− ρ2

√
1
2

√
∆t (j = 1)

Yt + µ2∆t− σ2

√
1− ρ2 2√

2

√
∆t (j = 2)

Yt + µ2∆t− ρσ2

√
3
2

√
∆t + σ2

√
1− ρ2

√
1
2

√
∆t (j = 3)
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where (µ1, µ2, σ1, σ2, ρ) are parameters in (2). Define the state transition probability Pt ≡ (p1
t , p

2
t , p

3
t )

from state (Xt, Yt) to state (Xt+1, Yt+1) as follows.

p1
t = p2

t = p3
t =

1
3

t = 0, 1, 2, · · · , N − 1 (4)

where pj
t is the probability of going from state (Xt, Yt) to state (Xj

t+1, Y
j
t+1) (j = 1, 2, 3).

Let Λn denote the time-n state space of the Markov process {(Xn, Yn) : n = 0, 1, · · · , N}. Then

Λn is given by the following set.

Λn ≡
n⋃

i=0



(Xi,j , Yi,j) :





Xi,j = X0 + nµ1∆t− (i− 2j) ·∆X

Yi,j = Y0 + nµ2∆t− (2n−3i√
2

√
1− ρ2 + (i−2j)

√
3√

2
ρ)∆Y

j = 0, 1, · · · , i



(5)

where ∆X = σ1

√
3
2

√
∆t and ∆Y = σ2

√
∆t. It has been shown (He 1990) that the processes

{(Xn, Yn) : n = 0, 1, · · · , N} defined above converge in distribution to the Brownian motion pro-

cesses (2) with initial condition (X̃t, Ỹt) = (X0, Y0) as N →∞.

3.1.2 Mean-reverting process

Similar to the Brownian motion case, we use a recombining quadrinomial lattice process to approx-

imate a mean-reverting process. For the ease of exposition, we start with taking parameters κ1(t),

κ2(t), θ1(t), θ2(t), σ1(t), σ2(t), and ρ(t) in (1) to be constants. (Xt, Yt) denotes the log-price state

vector at time t (t = 0, 1, · · · , N). Following (Xt, Yt), there are four possible states (Xj
t+1, Y

j
t+1)

(j = 1, 2, 3, 4) at time t+1 (t = 0, 1, · · · , N −1) as shown in the right panel of Figure 1. The values

of the four states (Xj
t+1, Y

j
t+1) (j = 1, 2, 3, 4) are:

(Xt+1, Yt+1) =





(X1
t+1, Y 1

t+1) = (Xt + σ1

√
∆t, Yt + σ2

√
∆t)

(X2
t+1, Y 2

t+1) = (Xt + σ1

√
∆t, Yt − σ2

√
∆t)

(X3
t+1, Y 3

t+1) = (Xt − σ1

√
∆t, Yt − σ2

√
∆t)

(X4
t+1, Y 4

t+1) = (Xt − σ1

√
∆t, Yt + σ2

√
∆t)

(6)
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The state transition probabilities {p1
t , p

2
t , p

3
t , p

4
t } from state (Xt, Yt) to state (Xt+1, Yt+1) are chosen

to match the local first and second moments of (1), namely,





E[Xt+1 −Xt | (Xt, Yt)] = κ1(θ1 −Xt)∆t

E[Yt+1 − Yt | (Xt, Yt)] = κ2(θ2 − Yt)∆t

E[(Xt+1 −Xt)2 | (Xt, Yt)] = σ2
1 ·∆t

E[(Yt+1 − Yt)2 | (Xt, Yt)] = σ2
2 ·∆t

E[(Xt+1 −Xt)(Yt+1 − Yt) | (Xt, Yt)] = ρσ1σ2 ·∆t + o(∆t)

(7)

where (κ1, κ2, θ1, θ2, σ1, σ2, ρ) are parameters in (1). Specifically, {pj
t : j = 1, 2, 3, 4} solves the

following system of equations (8) where pj
t is the probability of moving from (Xt, Yt) to (Xj

t+1, Y
j
t+1)

(j = 1, 2, 3, 4). 



p1
t + p2

t + p3
t + p4

t = 1

(p1
t + p2

t − p3
t − p4

t )σ1

√
∆t = κ1(θ1 −Xt)∆t

(p1
t − p2

t − p3
t + p4

t )σ2

√
∆t = κ2(θ2 − Yt)∆t

(p1
t + p2

t + p3
t + p4

t ) · σ2
1 ·∆t = σ2

1 ·∆t

(p1
t + p2

t + p3
t + p4

t ) · σ2
2 ·∆t = σ2

2 ·∆t

(p1
t − p2

t + p3
t − p4

t )σ1σ2 ·∆t = ρσ1σ2 ·∆t + o(∆t)

(8)

where o(∆t) = κ1(θ1 −Xt)∆t · κ2(θ2 − Yt)∆t. The solution to (8) is





p1
t = 1+ρ

4 + [κ1(θ1−Xt)
4σ1

+ κ2(θ2−Yt)
4σ2

]
√

∆t + κ1(θ1−Xt)κ2(θ2−Yt)
4σ1σ2

∆t

p2
t = 1−ρ

4 + [κ1(θ1−Xt)
4σ1

− κ2(θ2−Yt)
4σ2

]
√

∆t− κ1(θ1−Xt)κ2(θ2−Yt)
4σ1σ2

∆t

p3
t = 1+ρ

4 − [κ1(θ1−Xt)
4σ1

+ κ2(θ2−Yt)
4σ2

]
√

∆t + κ1(θ1−Xt)κ2(θ2−Yt)
4σ1σ2

∆t

p4
t = 1−ρ

4 − [κ1(θ1−Xt)
4σ1

− κ2(θ2−Yt)
4σ2

]
√

∆t− κ1(θ1−Xt)κ2(θ2−Yt)
4σ1σ2

∆t

(9)

The state space of (Xt, Yt) is a subset of {(X0 +m ·σ1

√
∆t, Y0 +n ·σ2

√
∆t) : m,n = −t,−t+2,−t+

4, · · · , t − 4, t − 2, t}. We next need to determine the range of m and n for which the components

in solution (9) are all between 0 and 1. When N is sufficiently large, pj
t ∈ (0, 1) for j = 1, 2, 3, 4 is

equivalent to 



0 ≤ ρ
4 + 1

4(1− m·κ1·T
N )(1− n·κ2·T

N ) ≤ 1

0 ≤ −ρ
4 + 1

4(1− m·κ1·T
N )(1 + n·κ2·T

N ) ≤ 1

0 ≤ ρ
4 + 1

4(1 + m·κ1·T
N )(1 + n·κ2·T

N ) ≤ 1

0 ≤ −ρ
4 + 1

4(1 + m·κ1·T
N )(1− n·κ2·T

N ) ≤ 1

(10)
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A sufficient set of conditions for (10) to hold is |m| ≤ 1−
√
|ρ|

κ1·T N and |n| ≤ 1−
√
|ρ|

κ2·T N . Let mt and nt

denote the integer parts of min(t, 1−
√
|ρ|

κ1·T N) and min(t, 1−
√
|ρ|

κ2·T N), respectively.

For all t = 0, 1, · · · , N , the state space of (Xt, Yt) at time t, denoted by Λt, is given by the

following set.

Λt ≡
⋃

n∈{−nt:2:nt}
{(X0 + m · σ1

√
∆t, Y0 + n · σ2

√
∆t) : m = −mt,−mt + 2, · · · , mt − 2, mt} (11)

where {−nt : 2 : nt} represents the sequence of {−nt,−nt + 2,−nt + 4, · · · , nt − 2, nt}.
When t ≤ min(mt, nt), we set the states {(Xj

t+1, Y
j
t+1)} at (t + 1) reachable from (Xt, Yt)

according to (6) and the transition probabilities Pt according to (9) for all (Xt, Yt) ∈ Mt. When t >

min(mt, nt), if (Xt, Yt) is in the interior of the mesh Λt i.e., Xt ∈ (X0−mt ·σ1

√
∆t,X0+mt ·σ1

√
∆t)

and Yt ∈ (Y0−nt ·σ2

√
∆t, Y0 + nt ·σ2

√
∆t), then we define the subsequent states {(Xj

t+1, Y
j
t+1)} at

stage (t + 1) reachable from (Xt, Yt) according to (6) and the transition probabilities according to

(9); if (Xt, Yt) is on the boundary of Λt, then we need to increase the number states emanating from

(Xt, Yt) and choose the corresponding set of probabilities {pj
t} so that (7) holds true. For instance,

when Xt = X0 − mt · σ1

√
∆t or Xt = X0 + mt · σ1

√
∆t, we increase the number of subsequent

transition states (Xj
t+1, Y

j
t+1) from 4 to 6; and let

X2j−1
t+1 = X2j

t+1 = Xt − sgn(m) · (2j − 1)σ1

√
∆t (j = 1, 2, 3)

Y 2j−1
t+1 = Yt + σ2

√
∆t and Y 2j−1

t+1 = Yt − σ2

√
∆t (j = 1, 2, 3)

(12)

The transition probabilities {pj
t : j = 1, 2, · · · , 6} are given by the solution of

p1
t + p2

t + p3
t + p4

t + p5
t + p6

t = 1

(−p1
t − p2

t − 3p3
t − 3p4

t − 5p5
t − 5p6

t )σ1

√
∆t = κ1(θ1 −Xt)∆t

(p1
t − p2

t + p3
t − p4

t + p5
t − p6

t )σ2

√
∆t = κ2(θ2 − Yt)∆t

(p1
t + p2

t + 9p3
t + 9p4

t + 25p5
t + 25p6

t ) · σ2
1 ·∆t = σ2

1 ·∆t

(p1
t + p2

t + p3
t + p4

t + p5
t + p6

t ) · σ2
2 ·∆t = σ2

2 ·∆t

(−p1
t + p2

t − 3p3
t + 3p4

t − 5p5
t + 5p6

t )σ1σ2 ·∆t = ρσ1σ2 ·∆t + o(∆t)

. (13)

Notice that we can manage to have all pj
t ’s to be between 0 and 1 since there are six unknowns

and five equations in (13).We construct the states {(Xj
t+1, Y

j
t+1)} and the probabilities Pt ≡ {pj

t :

j = 1, 2, · · · , J} in the same manner when Yt takes the boundary values of Λt. Through this
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construction, we obtain a Markov chain {(Xt, Yt) : t = 0, 1, 2, · · · , N} with transition probability

{Pt : t = 0, 1, 2, · · · , N} satisfying (7) in every state (Xt, Yt) for all t.

Proposition 3.1 stated below provides a set of sufficient conditions for a continuous-time Markov

chain, which has sample paths being right continuous with left limit (RCLL), to converge in dis-

tribution to the strong solution of a system of SDEs.

Suppose Xt is the strong solution of SDEs dXt = b(Xt)dt + σ(Xt)dWt with X0 = x0 ∈ Rn

where Wt is a standard Brownian motion in Rn; b(Xt) and σ(Xt) are n × 1 and n × n matrices,

respectively. Let a ≡ (aij(Xt))n×n denote the matrix σ(Xt)σ(Xt)T . For any h > 0, define a

Markov chain {Y h
mh, m = 0, 1, 2, · · ·}, taking values in Sh ⊂ Rd, with Πh(x, dy) being its sequence

of transition probabilities, i.e.,

P (Y h
(m+1)h ∈ A | Y h

mh = x) = Πh(x,A) for x ∈ Sh, A ⊂ Rd.

Proposition 3.1 Define a continuous-time Markov process X
h
t by X

h
t = Y

h
h[t/h] where [t/h] is the

largest integer no greater than t/h (i.e. we make X
h
t constant on intervals [mh, (m + 1)h]). And

also define ah
ij(x) =

∫
|y−x|≤1(yi − xi)(yj − xj)Πh(x, dy); b

h
i (x) =

∫
|y−x|≤1(yi − xi)Πh(x, dy). Let

Zm(Y h
mh) denote the conditional random variable (Y h

(m+1)h − Y
h
mh | Y h

mh) for m = 0, 1, 2, · · ·.
If for each i, j, and ε > 0, (i) ah

ij(x) = aij(x)h+o(h); (ii) b
h
i (x) = bi(x)h+o(h); (iii) |Zm(Y h

mh)|
is bounded by some deterministic function z(h) with probability 1, ∀Y h

mh ∈ Sh, m = 0, 1, 2, · · ·,
moreover, limh↓0 z(h) = 0; and (iv) X

h
0 = x0, then we have X

h
t converging in distribution to Xt

with X0 = x0 as h → 0.

Proof. See Appendix A.

The fact that the processes {(Xt, Yt) : t = 0, 1, · · · , N}, defined by (6) and (9) in the interior of Λt

and properly defined on the boundary of Λt for all t, converge in distribution to the corresponding

mean-reverting processes is then a corollary to Proposition 3.1.

Corollary 3.2 Consider the continuous-time mean-reversion processes {(X̃t, Ỹt) : 0 ≤ t ≤ T}
which are the strong solution of the SDEs (1) with constant parameters (κ1, κ2, θ1, θ2, σ1, σ2, ρ) and

initial value (X̃0, Ỹ0) = (x0, y0). Suppose |ρ| < 1. Then the Markov processes {(Xt, Yt) : t =

0, 1, · · · , N} defined by (6) and (9) in the interior of Λt and properly defined on the boundary of Λt

with (X0, Y0) = (x0, y0) converge in distribution to {(X̃t, Ỹt) : 0 ≤ t ≤ T} as ∆t → 0.

Proof. Since parameters (κ1, κ2, θ1, θ2, σ1, σ2, ρ) are constants, the strong solution to the SDEs (1)
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exists for any initial value (X̃0, Ỹ0) = (x0, y0). As long as we can verify that the Markov process

{(Xt, Yt) : t = 0, 1, · · · , N} defined by (6) and (9) satisfies the four conditions in Proposition 3.1,

the claim of this corollary is true by applying that proposition. Let h = ∆t = T
N . Without loss

of generality, consider ∆t ¿ 1. By the construction of {(Xt, Yt) : t = 0, 1, · · · , N} through (6) and

(9), or (12) and (13), we know that conditions (i), (ii), and (iv) in Proposition 3.1 are satisfied.

Moreover, |(Xt+1−Xt | Xt)| ≤ α ·σ1

√
∆t and |(Yt+1−Yt | Yt)| ≤ α ·σ2

√
∆t for some constant α for

all t, which means that condition (iii) is also satisfied. Therefore, the convergence in distribution

is established.

Corollary 3.2 holds true when (κ1(t), κ2(t), θ1(t), θ2(t), σ1(t), σ2(t), ρ(t)) in (1) are simple functions

of t since a simple function is a piecewise constant function.

3.2 Valuation of a Power Plant with Operational Constraints

Suppose the logarithm of the electricity and the natural gas prices evolve according to the Markov

processes {(Xt, Yt) : t = 0, 1, · · · , N} constructed in Section 3.1. Recall from Section 2 that there

is a delay (or, ramp-up) period of D (called the ramp-up time) before a power plant can output

electricity after the plant being turned on from the “off” state. Without loss of generality, we

assume that KN ≡ D
∆t is an integer. Let wt ∈ WN ≡ {0, 1, 2, · · · , KN} denote the operational state

of the power plant at time t. Then wt takes on KN + 1 possible values:

• wt = 0 : This means that the power plant is in off state at time t.

• wt = i : For i ∈ {1, 2, · · · ,KN − 1}, it means that the power plant is on but in the ith stage

of the ramp-up period D at time t.

• wt = KN : This means that the power plant is on and ready to generate electricity outputs

at time t.

While the value of a power plant certainly depends on (Xt, Yt) and wt at each time step t

(t = 0, 1, · · · , N), it also depends on the action taken by the power plant operator. Assume the

plant operator can only take the following three possible actions ai (i = I, II, III) at time t .

• aI =“full”: The operator runs the power plant at full capacity level. The plant generates

Q · ∆t units of electricity in time ∆t with an operating heat rate of Hr if it is not in the

ramp-up period; otherwise it generates 0 units of electricity.
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• aII =“low”: The operator keeps the power plant running at the minimum capacity level. The

plant generates Q ·∆t units of electricity in time ∆t with an operating heat rate of Hr if it

is not in the ramp-up period; otherwise it generates 0 units of electricity.

• aIII =“off”: The operator turns the power plant off from “on” state.

The admissible control set At ≡ A(Xt, Yt, wt) is A ≡ {aI , aII , aIII} for all time t in our formu-

lation. The operator of the power plant seeks to maximize the expected total profit of the power

plant with respect to the random price vector (Se
t , S

g
t ) over the operating time horizon by making

optimal decisions regarding whether to turn on or shut down the generating unit as well as how to

operate the unit. Under the risk-neutral probabilities, the expected total profit of a power plant

over its operating time horizon yields the value of the power plant during that time period.

Let Rt ≡ R(a, x, y, w) : A × R2 × WN → R1 denote the operating profit of the power plant

during time period t in state (x, y, w) if the operator takes action a. The operational characteristics

described in Section 2 are reflected in the following definitions of Rt. We assume that the ramp-up

cost rate is cr(y) per unit of time where cr(·) : R1 → R1 is a positive increasing function.

R(at, Xt, Yt, 0) =





at = aI : −cstart − cr(Yt) ·∆t

at = aII : −cstart − cr(Yt) ·∆t

at = aIII : 0

∀(Xt, Yt)

R(at, Xt, Yt, w) =





at = aI : −cr(Yt) ·∆t

at = aII : −cr(Yt) ·∆t

at = aIII : −cdown

∀(Xt, Yt), w = 1, 2, · · · ,KN − 1 (14)

R(at, Xt, Yt, w) =





at = aI : Q ·∆t · [exp(Xt)−Hr · exp(Yt)]

at = aII : Q ·∆t · [exp(Xt)−Hr · exp(Yt)]

at = aIII : −cdown

∀(Xt, Yt), w = KN

The plant operator seeks to maximize the expected sum of Rt’s over the life span of the power plant

by choosing a series of most profitable actions {at : t = 0, 1, · · · , N} from the admissible control

sets {At : t = 0, 1, · · · , N}. The value of the power plant at time k (0 ≤ k ≤ N), which is a function

of the initial states (Xk, Yk, wk), is thus given by

Vk(x, y, w) = max
{at∈At:t=k,k+1,···,N}

Ek[
N∑

t=k

e−r·(t−k)∆tR(at, Xt, Yt, wt) | (Xk, Yk) = (x, y)] (15)
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where Ek[· | (Xk, Yk) = (x, y)] is the conditional expectation operator conditioning on (Xk, Yk);

and r is the constant discount rate. The value function Vt(x, y, w) can be solved through recursive

equations (16), (17), and (18) by a standard backwards induction algorithm for SDP problems.

• If the operating state of the power plant is “off”, namely, w = 0:

Vt(Xt, Yt, 0) = max
at





at = aI : −cstart − cr(Yt) ·∆t + e−r·∆tEt[Vt+1(Xt+1, Yt+1, 1)]

at = aII : −cstart − cr(Yt) ·∆t + e−r·∆tEt[Vt+1(Xt+1, Yt+1, 1)]

at = aIII : e−r·∆tEt[Vt+1(Xt+1, Yt+1, 0)]
(16)

• If the state of the power plant is in “ramp-up”, that is, w = 1, · · · ,KN − 1:

Vt(Xt, Yt, w) = max
at





at = aI : −cr(Yt) ·∆t + e−r·∆tEt[Vt+1(Xt+1, Yt+1, w + 1)]

at = aII : −cr(Yt) ·∆t + e−r·∆tEt[Vt+1(Xt+1, Yt+1, w + 1)]

at = aIII : −cdown + e−r·∆tEt[Vt+1(Xt+1, Yt+1, 0)]

(17)

• If the state of the power plant is “ready”, namely, w = KN :

Vt(Xt, Yt,KN ) = max
at





at = aI :
Q ·∆t · [exp(Xt)−Hr · exp(Yt)]

+e−r·∆tEt[Vt+1(Xt+1, Yt+1,KN )]

at = aII :
Q ·∆t · [exp(Xt)−Hr · exp(Yt)]

+e−r·∆tEt[Vt+1(Xt+1, Yt+1,KN )]

at = aIII : −cdown + e−r·∆tEt[Vt+1(Xt+1, Yt+1, 0)]

(18)

where Ek[·] is just an abbreviated notation of Ek[· | (Xk, Yk) = (x, y)].

The boundary conditions are

VN+1(x, y, w) ≡ 0, ∀(x, y) ∈ R2, w = 0, 1, · · · ,KN . (19)

3.3 Structural Property of Value Function and Optimal Policy

We start with proving a useful lemma and using it to show that, at each time step t, the value

function Vt(x, y, w) is continuous, and increasing in x decreasing in y (or equivalently, increasing

in (x,−y)) for all the states of w. We then demonstrate that, if the operating profit function
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R(a, x, y, w) satisfies certain conditions, then optimal decisions at each time t also have monotonic

properties.

• A few notations and definitions: Define a partial order “ º ” on R2 as follows. For two

vectors (x1, y1) and (x2, y2), we say that (x1, y1) º (x2, y2) if and only if x1 ≥ x2 and y1 ≤ y2.

A Borel measurable set U ⊆ R2 is called an upper set (or, increasing set) if (x, y) ∈ U whenever

(x, y) º (x̃, ỹ) and (x̃, ỹ) ∈ U . Let f(x, y, w) be a real function defined on Λ × W where

Λ ⊂ R2 and W ⊂ R1. f(x, y, w) is increasing in (x, y, w) if f(x, y, w) ≥ f(x̃, ỹ, w̃) whenever

(x, y) º (x̃, ỹ) and w ≥ w̃. f(x, y, w) is said to have increasing difference in (x, y) and w if,

for any (x, y), (x̃, ỹ) ∈ Λ and (x, y) º (x̃, ỹ), f(x, y, w) − f(x̃, ỹ, w) ≥ f(x, y, w̃) − f(x̃, ỹ, w̃)

whenever w ≥ w̃.

Recall that Λt denotes the time-t state space of the Markov process {(Xt, Yt) : t = 0, 1, · · · , N}
defined by either equations (3) and (4), or equations (6) and (9).

With the help of Lemma B.1 in Appendix B, we get the following properties of the value function

Vt(x, y, w).

Proposition 3.3 At each time step t (t = 0, 1, · · · , N), ∀w = 0, 1, · · · ,KN , we have Vt(x, y, w)

continuous in (x, y) and Vt(x1, y1, w) ≥ Vt(x2, y2, w) whenever (x1, y1) º (x2, y2).

Proof. See Appendix B.

We next turn to the discussion of the monotonic optimal decision rules. Let us define a rank

order for the three actions to be

aI > aII > aIII (20)

Let a∗t (x, y, w) denote the optimal solution of (16), (17), and (18) at time t given the time-t state

(Xt, Yt, wt) = (x, y, w) (if the optimal solution is not unique then we set a∗t (x, y, w) to be the largest

one). We say a∗t (x, y, w) is increasing in (x, y, w) if a∗t (x, y, w) > a∗t (x̃, ỹ, w̃) whenever (x, y) º (x̃, ỹ)

and w ≥ w̃.

Proposition 3.4 If the operating profit function R(a, x, y, w) satisfies the following conditions,

1. R(a, x, y, w) is increasing in (x, y, w) for all a ∈ A;

2. R(a, x, y, w) has increasing differences in pairs of {a, (x, y, w)}, {x, (a, y, w)}, {y, (a, x, w)},
{w, (a, x, y)}, {(a, x), (y, w)}, {(a, y), (x,w)}, and {(a,w), (x, y)};
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And, 0 ≤ ρ < 1 in (7). Then, at each time step t (t = 0, 1, · · · , N), given any (x, y) º (x̃, ỹ)

where (x, y) and (x̃, ỹ) ∈ Λt, (Recall that Λt denote the time-t state space of the Markov process

{(Xt, Yt) : t = 0, 1, · · · , N} generated by equations (3) and (4), or equations (6) and (9).)

a) Vt(x, y, w)− Vt(x̃, ỹ, w) ≥ Vt(x, y, w′)− Vt(x̃, ỹ, w′) whenever w ≥ w′, ∀w, w′ ∈ WN .

b) The optimal action a∗t (x, y, w) is increasing in (x, y, w).

Proof. See Appendix C.

Remark 3.5 Condition A provides a set of sufficient conditions for function R(a, x, y, w) to satisfy

conditions stated in Proposition 3.4.

Condition A

1. Q ·Hr > Q ·Hr and cr(y) ≥ Q ·Hr · ey.

2. cdown = 0.

3. Q ·Hr · (ey − eey) ≥ cr(y)− cr(ỹ).

For discussion purposes, we assume that the conditions in Proposition 3.4 are satisfied in the

remainder of this section. Proposition 3.4 says that the optimal action at(x, y, w) at time t within

any operational state w is a threshold type of control on the X − Y plane with both lattice price

models introduced in Section 3.1. This implies that there exist optimal action regions with boundary

Ba
t (w) on the X − Y plane where a denotes the action and w denotes the operational state.

When a power plant is in the off state, i.e., w = 0, a turn-on boundary Bon
t (0) ≡ {(x∗t , y∗t ) :

for every given x∗t , y∗t = supy∈{yt:a∗t (x∗t ,yt,0)=aI} y. (y∗t = −∞ if the set {yt : a∗t (x∗t , yt, 0) = aI} is

empty.)} consists of points whose coordinates (x∗t , y∗t ) are such that, for each x∗t , the corresponding

y∗t is the largest yt for which the optimal action a∗t (x∗t , yt, 0) is aI , namely, to turn a plant from

off to on. (Note that there is no difference between actions aI and aII in states w = 0, 1, · · · , KN

because of our assumption about no cost or time-delay in switching between aI and aII . We set the

optimal action a∗ to be aI whenever a∗ = aI = aII since aI > aII .) The optimal action a∗t (x, y, 0)

at any point (x, y) in the state space Λt can be inferred from the relative position of (x, y) with

respect to Bon
t (0): a∗t (x, y, 0) is to turn on the plant (aI) (or, keep the plant in off state (aIII)) if

and only if there exists (x∗t , y∗t ) ∈ Bon
t (0) such that (x, y) º (x∗t , y∗t ) (or, (x∗t , y∗t ) º (x, y)).

Similarly, the turn-off boundary Boff
t (w) in a ramp-up state w (w = 1, 2, · · · ,KN − 1) is given

by the set {(x∗t , y∗t ) : for every given x∗t , y∗t = infy∈{yt:a∗t (x∗t ,yt,w)=aIII} y (y∗t = +∞ if the set
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{yt : a∗t (x∗t , yt, w) = aIII} is empty.)}. The optimal action a∗t (x, y, w) at any point (x, y) in the

state space Λt is to turn off the plant (aIII) (or, keep the plant in ramp-up (aI)) if and only if there

exists (x∗t , y∗t ) ∈ Boff
t (w) such that (x∗t , y∗t ) º (x, y) (or, (x, y) º (x∗t , y∗t )).

In the on-and-ready state w = KN , in addition to a turn-off boundary Boff
t (KN ), there may

exist a switching boundary Bswitch
t (KN ). (“switching” means that the output level of a power plant

is switched between maximum capacity level and minimum capacity level.) By inspecting the value

function (18) at w = KN , we know that action aI dominates action aII whenever Q · [exp(x)−Hr ·
exp(y)] > Q · [exp(x)−Hr · exp(y)] and aII dominates aI otherwise. Thus a switching boundary,

if it exists, coincides with the curve Γ which is independent of time t

Γ ≡ {(x, y) : Q · [exp(x)−Hr · exp(y)] = Q · [exp(x)−Hr · exp(y)]} (21)

However, Γ∩Λt may be empty due to the fact that Λt is a discrete set. To avoid confusion, we stick

to the generic notations used in previous paragraphs for describing Bswitch
t (KN ) and Boff

t (KN ).

If there exists a (x, y) ∈ Λt such that a∗t (x, y, KN ), then Bswitch
t (KN ) ≡ {(x∗t , y∗t ) : for every given

x∗t , y∗t = supy∈{yt:a∗t (x∗t ,yt,KN )=aI} y (y∗t = −∞ if the set {yt : a∗t (x∗t , yt,KN ) = aI} is empty.)} and

Boff
t (KN ) ≡ {(x∗t , y∗t ) : for every given x∗t , y∗t = infy∈{yt:a∗t (x∗t ,yt,KN )=aIII} y (y∗t = +∞ if the set

{yt : a∗t (x∗t , yt,KN ) = aIII} is empty.)}; otherwise, the switching boundary Bswitch
t (KN ) does not

exist and the turn-off boundary is {(x∗t , y∗t ) : for every given x∗t , y∗t = infy∈{yt:a∗t (x∗t ,yt,KN )=aIII} y

(y∗t = +∞ if the set {yt : a∗t (x∗t , yt,KN ) = aIII} is empty.)}. The optimal action at any point (x, y)

in Λt can also be inferred based on Bswitch
t (KN ) and Boff

t (KN ) accordingly.

Let A be a set in Λt. Given any point (x̃, ỹ), we define xA(ỹ) = supx∈{x:(x,ey)∈A} x, xA(ỹ) =

infx∈{x:(x,ey)∈A} x, yA(x̃) = supy∈{y:(ex,y)∈A} y and y
A
(x̃) = infy∈{y:(ex,y)∈A} y. Let A and B be two

sets in Λt, we say that A º B if ∀ (x, y) ∈ A, xB(y) ≤ xA(y) and yA(x) ≤ y
B

(x). Proposition 3.4

also establishes a ranking order in “ º ” among all the turn-on, turn-off and switching boundaries

(provided it exists) as follows.

Bon
t (0) º Boff

t (1) º Boff
t (2) º · · · º Boff

t (KN − 1) º Bswitch
t (KN ) º Boff

t (KN ) (22)

Whenever the log-price vector (lnSg
t , lnSe

t ) lies to the lower-right of the boundary Bon
t (0), a

power plant operator shall turn the power plant on if the operational state is off (w = 0) or maintain

current operations if the operational state is w = 1, 2, · · · ,KN + 1. The region between Bon
t (0) and
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Boff
t (1) is a “no-action” band on X−Y plane in the sense that if the log-price vector falls inside

this band then it is optimal for a power plant operator to maintain the operational state of the

power plant as is regardless of w (w = 0, 1, · · · ,KN ). If the log-price vector lies to the upper-left

of the boundaries Boff
t (w) (w = 1, 2, · · · ,KN ) or Bswitch

t (KN ), then, depending on the state of the

power plant, then it is optimal for the operator to reduce the output of the power plant to “off” or

minimum capacity level depending on the state of the plant.

4 Numerical Experiments

We implement this proposed methodology for valuing a fossil fuel power plant incorporating oper-

ational characteristics with a set of sample parameters. This section reports the numerical results

on valuing a hypothetical 100MW natural gas fired power plant over a fixed time horizon.

We assume the following specific functional form for the ramp-up cost rate function cr(y) defined

in section 3.2.

cr(y) = Q ·Hr · ey + Mr (23)

where Mr is a constant. This particular form can be interpreted as follows. The cost rate of

ramping up a power plant is a constant mark-up to the cost rate of operating the power plant

at the minimum capacity level. With this cr(y), the operating profit function R(a, x, y, w) of the

power plant satisfies Condition A. It takes one period to ramp up the power plant from the “off”

state to a desired output state but there is no delay in increasing/decreasing output level once

the plant is on. Table 1 summarize the assumed parameter values for the underlying power plant

used in our numerical illustration. The maximum and the minimum capacity levels are 100 MW

and 60 MW, respectively. The start-up cost is $8000/start, which is roughly the one-day on-peak

operating profit of a 100 MW natural gas power plant. The ratio between the operating heat rates

at the minimum and the maximum capacity levels of the power plant is assumed to be 1.38 : 1.

The constant risk-free rate r is 4.5%.

cstart Q : Q Hr : Hr Mr r

$8000 0.6 : 1 1.38 : 1 1 4.5%

Table 1: Parameters for a Hypothetical Natural Gas Fired Power Plant
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4.1 Valuation Under Different Price Models

We first examine the effects of price model specification on power plant valuation for two different

price processes: a geometric Brownian motion (GBM) process and a mean-reverting process in

which the logarithm of the underlying price is represented by an Ornstein-Uhlenbeck (O-U) process.

The assumed parameter values for the two models are given in Table 2 and Table 3. A discrete-

µe 1% µg 1%
σe 0.4 σg 0.3
ρ 0.3

Table 2: Parameters for Correlated Brownian Motions

time trinomial price lattice is constructed according to (3) and (4) with the parameters specified in

Table 2 to approximate two correlated GBMs and a quadrinomial lattice is constructed according

to (6) and (9) with the parameters in Table 3 to approximate two correlated O-U processes. The

initial prices of electricity and natural gas are assumed to be $21.7 per MWh and $3.16 per MMBtu,

which are sampled from historical market prices. When approximating either the GBM model or

the mean-reversion price model for electricity and natural gas, the corresponding lattice model is

built with ∆t having a granularity of one day (our model can handle the hourly granularity but the

market information for hourly prices is quite difficult to obtain for a 10-year time horizon). The

κ1 3 κ2 2.25
θ1 3.2553 θ2 0.87
σ1 0.79 σ2 0.6
ρ 0.3

Table 3: Parameters for Correlated Ornstein-Uhlenbeck Processes

operator of the power plant makes operational decisions at all nodes of the lattice.

We compute the value for the plant over a 10-year horizon for different possible levels of Hr,

the operating heat rate at the maximum capacity level. Let Hr take values of 7.5, 8.5, 9.5, 10.5,

11.5, 12.5, and 13.5 measured in MMBtu/MWh. The start-up cost is $8000 per start as assumed

above and the initial state of the plant is set to be off. The corresponding asset valuation results

are reported in Table 4 and illustrated in Figure 2 where the x-axis represents the operating heat

rate level and the primary y-axis on the left represents plant capacity value. The secondary y-axis

on the right represents the percentage of absolute difference in valuation between the GBM model

and the mean-reversion model, denoted by Vdiff , which is computed as |VGBM − Vmrvt|/Vmrvt.
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Figure 2: Value of a NG fired Power Plant under Alternative Price Models: GBM vs. Mean-
reversion

The parameters specified in Table 2 and Table 3 were selected so that the asset values VGBM and

Vmrvt would match if the power plant has a heat rate of Hr = 9.5 (which is typical for a NG fired

plant) and it is operated at the maximum capacity level. Figure 2 illustrates the sensitivity of plant

value to the assumed price process. It demonstrates that the assumption of mean-reverting price

processes yields a higher valuation for efficient power plants (e.g., plants with a Hr smaller than

9.5) while the assumption of GBM price models leads to a higher valuation for inefficient plants

(e.g., plants with a Hr greater than 9.5). The dashed curve (without any markers) in Figure 2

indicates that, for inefficient power plants, the plant value resulting from a GBM price model could

Heat Rate (Hr) 7.5 8.5 9.5 10.5 11.5 12.5 13.5
VGBM 31.92 27.99 24.82 22.21 20.03 18.18 16.59
Vmrvt 40.80 32.12 24.82 18.88 14.13 10.49 7.68
Vdiff 21.8% 12.8% 0% 17.7% 41.7% 73.4% 116.2%
E(StartGBM ) 0.032 0.028 0.024 0.022 0.019 0.017 0.016
E(RampGBM ) 0.038 0.036 0.034 0.033 0.031 0.030 0.028
E(Startmrvt) 0.086 0.111 0.133 0.142 0.139 0.131 0.119
E(Rampmrvt) 0.095 0.132 0.169 0.189 0.197 0.194 0.185

Table 4: Value (in million dollars) of a NG fired Power Plant under Alternative Price Models: GBM
vs. Mean-reversion.
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be more than double (e.g., 116.2% for Hr = 13.5) the corresponding value obtained under a mean-

reverting price model. Moreover, the valuation of a power plant is much more sensitive to operating

efficiency under the mean-reversion price models than under the GBM models.

In Table 4, we also present the expected start-up costs, denoted by E(Start∗), and ramp-up

costs, denoted by E(Ramp∗), incurred by a power plant under the respective power price models.

Both the expected start-up and ramp-up costs in the mean-reversion case are significantly higher

than those in the GBM case. This phenomenon is demonstrated in Figure 3. The solid and dashed

0.00

50.00

100.00

150.00

200.00

250.00

7.5 8.5 9.5 10.5 11.5 12.5 13.5

Heat Rate

Cost (1000 $)

Start-up (MRVT)

Ramp-up (MRVT)

Start-up (GBM)

Ramp-up (GBM)

Figure 3: Expected Start-up and Ramp-up Costs of a NG fired Power Plant under Alternative
Price Models: GBM vs. Mean-reversion

curves illustrate the expected start-up and ramp-up costs for different heat rate levels. Curves with

triangular markers correspond to the GBM price assumption and curves with squared markers

correspond to the mean-reversion assumption. The intuitive explanation to this phenomenon is

that the spark spread tends to grow larger (smaller) if the current spread level is large (small) in

the GBM price models but not for the mean-reversion price models. Thus a power plant, under the

GBM price assumptions, would be turned on and off much less frequently than it would be otherwise

under the mean-reversion price assumptions. One other observation illustrated by Figure 3 is that

the expected start-up and ramp-up costs are peaked at certain intermediate heat rates for the

mean-reversion price models indicating that the operational flexibility option (i.e., the option of

turning a power plant on or off) is exercised most frequently for power plants with intermediate
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operating efficiencies if the underlying commodity prices are mean-reverting.

4.2 Impacts of Operational Characteristics on Asset Valuation

We next examine the impacts of operating characteristics on the valuation of a power plant under

each of the two price models. The time horizon is set to be 10 years. Again we use the parameter

values given in Table 2 and 3.

4.2.1 Geometric Brownian motion price model

Based on the trinomial price lattice of electricity and natural gas constructed in Section 4.1, we

compute the value of the gas fired power plant subject to the three operating constraints assuming

different operating heat rates (Hr). We also compute the value of the power plant in the case

where none of the three operational characteristics is considered as well as in the case where only

the start-up cost is ignored. The numerical results are reported in Table 5. For instance, if the
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Figure 4: Valuation of A Power Plant with/without Operational Characteristics Under GBM Price
Models

power plant under consideration has a operating heat rate of 9.5 MMBtu/MWh then when operated

at its best capacity level, its value is $24.82 million. If we ignore all three operating characteristics,

then the value of the power plant becomes $24.92 million which would be 0.41% higher than the

value obtained when accounting for all three operating characteristics. The solid curve in Figure 4
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Heat Rate (Hr) 7.5 8.5 9.5 11.5 13.5
Power Plant Value
(with 3 Oper. Char.)

31.92 mill. 27.99 mill. 24.82 mill. 20.03 mill. 16.59 mill.

Power Plant Value
(ignore startup only)

31.96 mill. 28.02 mill. 24.85 mill. 20.05 mill. 16.61 mill.

Pctg. Value Overstate.
(ignore startup only)

0.12% 0.12% 0.12% 0.11% 0.11%

Power Plant Value
(ignore 3 Oper. Char.)

32.04 mill. 28.10 mill. 24.92 mill. 20.11 mill. 16.67 mill.

Pctg. Value Overstate.
(ignore 3 Oper. Char.)

0.38% 0.40% 0.41% 0.43% 0.44%

Table 5: Value of a NG fired Power Plant under GBM Price Models

illustrates the value of the underlying power plant (incorporating three operating characteristics)

across different heat rates against the capacity value axis on the left. The dashed curve with

triangular markers in Figure 4 illustrates the percentage of overstated capacity valuation resulting

from ignoring all three physical characteristics across different heat rates. We can see that a higher

level of operating heat rate corresponds to a higher percentage of overstatement in valuation. Note

that the percentage of overstated capacity value is under 1% for operating heat rates up to 13.5

MMBtu/MWh under the GBM price models.

Table 5 also shows the value of the underlying power plant when only the start-up costs are

ignored as well as the corresponding percentage of the over-valuation. These results are represented

by the dashed curve with square markers in Figure 4. Ignoring the start-up costs alone accounts

for 25% to 31% of the overstated value of a power plant as compared to the overstated valuation

when all three operating characteristics are ignored.

4.2.2 Mean-reverting price model

We next examine the impacts of operational characteristics on the valuation of a power plant under

the assumption that both the electricity price and the natural gas price are mean-reverting which

is a more realistic assumption for energy commodities than the GBM assumption. Based on the

quadrinomial price lattice of electricity and natural gas constructed in Section 4.1, the value of

the underlying power plant is calculated for each of the three cases: considering all three physical

operating characteristics, ignoring the three operating characteristics, and ignoring the start-up

cost only. The numerical results are presented in Table 6. Similar to Section 4.2.1, we plot the

value of the power plant accounting for all three operating characteristics for different heat rates in
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Heat Rate (Hr) 7.5 8.5 9.5 11.5 13.5
Power Plant Value
(with 3 Oper. Char.)

40.80 mill. 32.12 mill. 24.82 mill. 14.13 mill. 7.68 mill.

Power Plant Value
(ignore startup only)

40.89 mill. 32.24 mill. 24.96 mill. 14.28 mill. 7.80 mill.

Pctg. Value Overstate.
(ignore startup only)

0.22% 0.37% 0.56% 1.05% 1.64%

Power Plant Value
(ignore 3 Oper. Char.)

41.15 mill. 32.60 mill. 25.38 mill. 14.78 mill. 8.26 mill.

Pctg. Value Overstate.
(ignore 3 Oper. Char.)

0.85% 1.50% 2.28% 4.59% 7.60%

Table 6: Value of a NG fired Power Plant under Mean-Reversion Price Models

Figure 5. The x-axis represents different heat rates. The solid curve with triangular markers plots

the capacity value incorporating all three operational constraints.

The dashed curves with circles illustrate the percentage by which the capacity value is overstated

due to ignoring the three operating characteristics. The percentage for which the capacity value

is overstated ranges from 0.85% for the most efficient plant to 7.60% for the least efficient plant.

The dashed curve with crosses in Figure 5 plots the percentage of overstated value of the power

plant due to not accounting for the start-up cost. We can see that the impacts of start-up cost

and ramp up constraint on capacity valuation are significant for a power plant with operating

efficiency below certain threshold. Furthermore, ignoring the start-up cost while considering the

other aspects would result in about 22% to 31% of the overstated capacity value of the underlying

power plant.

5 Conclusion

To summarize the above numerical results, we conclude that the operational characteristics affect

the valuation of a power plant to different extents depending on the operating efficiency of the

power plant and the assumptions about the electricity and the generating fuel prices. In general, the

impacts of physical operating characteristics on the power plant valuation are far more significant

under the mean-reversion price models than they are under the geometric Brownian motion price

models.

Under each price model, the more efficient a power plant is, the less is its valuation affected

by the operational constraints and vice versa. In the examples with mean-reverting commodity
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Figure 5: Valuation of A Power Plant with/without Operational Characteristics Under Mean-
Reversion Price Models

price processes, the impacts on capacity valuation range from 0.85% for the most efficient plant to

7.60% for the least efficient plant with a modest level of start-up cost. Among the three operational

characteristics of a power plant which we consider here, start-up cost and the ramp up constraint

are the two major factors affecting the capacity valuation. The reason is two-fold. The first-order

effect of the start-up and the ramp-up costs on capacity valuation is that they directly impose a

transaction cost on exercising the embedded spark spread options in a fossil fuel power plant when

the electricity price is greater than the fuel cost. The second-order effect of these costs is that they

force the power plant to keep operating at a loss or to forego a profit when the start-up cost cannot

be justified by the expected cost-saving or the expected profit that would result from turning the

power plant off or on. In other words, the start-up and the ramp-up costs reduce the “option value”

of a power plant. Our sensitivity analysis reveals that, under the mean-reversion models, ignoring

the start-up cost alone can explain a sizeable portion of the overstated capacity value of a power

plant (as compared to the overstated value when all three operational characteristics are ignored).

The costs associated with the operational characteristics of a power plant have different im-

plications on defining the best operational strategies for a power plant with different efficiency

characteristics. In our numerical example under the mean-reverting price assumption, the embed-

ded operational option of a power plant is exercised most frequently when its heat rate is at an
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intermediate level.

An important conclusion from our analysis is that under the GBM price process the error in-

troduced by ignoring operational characteristics is rather small. This is important considering that

in the absence of these characteristics pure spark spread valuation models of generating capacity

can be evaluated analytically. This does not mean that we would recommend the use of GBM

based valuation since as indicated such GBM models do not represent energy commodity prices

well. Nevertheless, GBM models are widely used in the energy industry. So it is worth noting that

the modeling error will not be noticeably reduced by detailed consideration of operating character-

istics. In the case of mean-reverting price models, however, the error is more significant ranging

from 2% for efficient plants to 7.6% for inefficient plants. Considering that plant values are of the

order of hundreds of million dollars, these are significant errors with large impacts on profitabil-

ity. Therefore, in spite of the convenience of analytic solutions available for pure spark spread

valuation models, the error at stake calls for the more detailed models and numerical solution ap-

proach described in this paper. These models can be further refined by including jumps, spikes,

and Markovian regime switching phenomena that often characterize energy prices.
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Appendix

A Proof of Proposition 3.1

To prove this proposition, we apply the Theorem (7.1) of Durrett (1996) (p.297) (referred to as

Theorem (7.1) below).

To apply Theorem (7.1), we need to verify that the four conditions stated in Proposition 3.1

imply those in the theorem. First of all, condition (iv) of Proposition 3.1 is the same as (iv) in

Theorem (7.1). Secondly, conditions (i) and (ii) in Proposition 3.1 imply: |ah
ij(x)/h − aij(x)| =

|aij(x) + o(h)/h − aij(x)| → 0 as h → 0 and |bh
i (x)/h − bi(x)| = |bi(x) + o(h)/h − bi(x)| → 0

as h → 0, that is, conditions (i) and (ii) in Theorem (7.1) are satisfied. Finally, condition (iii)

in Proposition 3.1 says that the support of the conditional random vector (Xt+1, Yt+1)|(Xt, Yt) is

uniformly bounded for all possible (Xt, Yt) across all time t, and the diameter of the support tends

to 0 as h → 0. This implies that condition (iii) in Theorem (7.1) is also satisfied. Therefore,

Proposition 3.1 is true by applying Theorem (7.1) of Durrett (1996).

B Proof of Proposition 3.3

Lemma B.1 Let f(x, y) : R2 → R1 be an arbitrary finite function increasing in x and decreasing

in y. For any (x1, y1) º (x2, y2) in Λt, we have

Et[f(Xt+1, Yt+1) | (Xt, Yt) = (x1, y1)] ≥ Et[f(Xt+1, Yt+1) | (Xt, Yt) = (x2, y2)] (24)

for all t (t = 0, 1, · · · , N).

Proof. Let (Xt+1, Yt+1) | (x, y) denote the random vector of (Xt+1, Yt+1) conditioning on (Xt, Yt) =

(x, y). First, it is easy to show (24) by definition when f(x, y) is a simple function. Then, for a

general real function f(x, y) that increases in x and decreases in y, we can find a sequence of simple

functions φm(x, y) so that lim
m→∞φm(x, y) = f(x, y) (e.g., Royden 1968) and each φm(x, y) satisfies

(24). Moreover, (Xt+1, Yt+1)|(x, y), defined by either (3) and (4), or (6) and (9), has a bounded

support. Therefore, we have

lim
m→∞Et[φm(Xt+1, Yt+1) | (x, y)] = Et[f(Xt+1, Yt+1) | (x, y)] (25)
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and (24) holds true for f(x, y).

Proof of Proposition 3.3

Proof. We prove by induction. At t = N , ∀w = 0, 1, · · · ,KN , we have VN (x, y, w) = maxa∈AN

R(a, x, y, w) where R(a, x, y, w) is defined in (14). Thus, VN (x, y, w) is continuous and increasing

in (x,−y) since R(a, x, y, w) is continuous and increasing in (x,−y) for each action a ∈ AN and

VN (x, y, w) is the upper envelope function of functions {R(a, x, y, w) : a ∈ AN}. Suppose we know

that, at time t = n + 1 ≤ N , Vn+1(x, y, w) is continuous and increasing in (x,−y) for all w. Then,

h(x, y) ≡ En[Vn+1(Xn+1, Yn+1, w) | (Xn, Yn) = (x, y)] is continuous. Moreover, by Lemma B.1,

h(x, y) is increasing in (x,−y). Therefore, the recursive equations (16), (17), and (18) imply that

Vn(x, y, w) is continuous and increasing in (x,−y).

C Proof of Proposition 3.4

Proof. This proposition is slightly more general than Theorem 3.9.2 in Topkis (1998) (p.165)

(referred to as Theorem 3.9.2 below) in the sense that we allow A×Λt×WN , which is the domain

of the function R(at, Xt, Yt, w), to be either a lattice or a non-lattice structure while Theorem 3.9.2

covers only the lattice cases.

For the mean-reverting Markov process defined by (6) and (9), A × Λt × WN is a sub-lattice

of A × R2 ×WN . (See Topkis (1998) for definitions of lattice/sublattice and related properties.)

We can then apply Theorem 3.9.2 to prove the proposition. Condition 1) says that R(at, Xt, Yt, w)

is increasing in (x, y, w). Condition 2) implies that R(at, Xt, Yt, w) is supermodular in (a, x, y, w).

The conditional random variable (Xt+1, Yt+1)|(x, y) is independent of at and w. The distribution

function of (Xt+1, Yt+1)|(x, y), denoted by Fx,y, is stochastically increasing in (x,−y) by Lemma B.1.

All we need to verify is that Fx,y is stochastically supermodular in (x, y), namely,
∫
U dFx,y is

supermodular in (x, y) for any increasing set U . With pi
t’s defined by (9) in the interior of Λt and

by (7) on the boundary of Λt in general, it is true that
∫
U dFex,ey +

∫
U dFx,y ≥

∫
U dFex,y +

∫
U dFx,ey for

all (x̃, ỹ) º (x, y) in Λt. Therefore, all the conditions of Theorem 3.9.2 are satisfied. Then, ft ≡ Vt

is supermodular in (x, y, w) (thus having increasing difference in (x, y) and w) and the optimal

decision a∗t (x, y, w) is increasing in (x, y, w).

For the Brownian motion case, we can similarly prove the claims by induction, following the

steps of Topkis (1998) in proving Theorem 3.9.2, with the property of “supermodularity” replaced

by the property of “increasing differences”.
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